Multiobjective Genetic Programming of Agent Decision Strategies
نویسندگان
چکیده
This work describes a method to control a behaviour of intelligent data mining agent. We developed an adaptive decision making system that utilizes genetic programming technique to evolve an agent’s decision strategy. The parameters of data mining task and current state of an agent are taken into account by tree structures evolved by genetic programming. Efficiency of decision strategies is compared from the perspectives of single and multi criteria optimization.
منابع مشابه
The Position of Multiobjective Programming Methods in Fuzzy Data Envelopment Analysis
Traditional Data Envelopment Analysis (DEA) models evaluate the efficiency of decision making units (DMUs) with common crisp input and output data. However, the data in real applications are often imprecise or ambiguous. This paper transforms fuzzy fractional DEA model constructed using fuzzy arithmetic, into the conventional crisp model. This transformation is performed considering the goal pr...
متن کاملSolving multiobjective linear programming problems using ball center of polytopes
Here, we aim to develop a new algorithm for solving a multiobjective linear programming problem. The algorithm is to obtain a solution which approximately meets the decision maker's preferences. It is proved that the proposed algorithm always converges to a weak efficient solution and at times converges to an efficient solution. Numerical examples and a simulation study are used to illu...
متن کاملFUZZY GOAL PROGRAMMING TECHNIQUE TO SOLVE MULTIOBJECTIVE TRANSPORTATION PROBLEMS WITH SOME NON-LINEAR MEMBERSHIP FUNCTIONS
The linear multiobjective transportation problem is a special type of vector minimum problem in which constraints are all equality type and the objectives are conicting in nature. This paper presents an application of fuzzy goal programming to the linear multiobjective transportation problem. In this paper, we use a special type of nonlinear (hyperbolic and exponential) membership functions to ...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملMultiobjective Algorithms for Financial Trading
Genetic programming (GP) is increasingly investigated in finance and economics. One area of study is its use to discover effective rules for technical trading in the context of a portfolio of equities (or an index). Early work in this area used GP to find rules that were profitable, but were nevertheless outperformed by the simple “buy and hold” (B&H) strategy. Attempts since then tend to repor...
متن کامل